Numerical stability of the Ritz method

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

buckling of viscoelastic composite plates using the finite strip method

در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....

On the Stability of the Ritz-Galerkin Method for Hammerstein Equations

For the numerical treatment of Hammerstein equations by variational methods which has been considered by Hertling, we establish the stability in the sense of Mikhlin, Stetter and Tucker. Introduction. If one uses a variational method for the numerical treatment of Hammerstein equations, one obtains a nonlinear algebraic system of equations. In order to investigate the stability of the computing...

متن کامل

The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems

We propose a deep learning based method, the Deep Ritz Method, for numerically solving variational problems, particularly the ones that arise from partial differential equations. The Deep Ritz method is naturally nonlinear, naturally adaptive and has the potential to work in rather high dimensions. The framework is quite simple and fits well with the stochastic gradient descent method used in d...

متن کامل

A hybrid method with optimal stability properties for the numerical solution of stiff differential systems

In this paper, we consider the construction of a new class of numerical methods based on the backward differentiation formulas (BDFs) that be equipped by including two off--step points. We represent these methods from general linear methods (GLMs) point of view which provides an easy process to improve their stability properties and implementation in a variable stepsize mode. These superioritie...

متن کامل

Numerical Stability of the Finite Element Immersed Boundary Method

The immersed boundary method is both a mathematical formulation and a numerical method. In its continuous version it is a fully non-linearly coupled formulation for the study of fluid structure interactions. As it is common in these cases, many numerical methods have been introduced to reduce the difficulties related to the non-linear coupling between the structure and the fluid evolution, howe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applications of Mathematics

سال: 1965

ISSN: 0862-7940,1572-9109

DOI: 10.21136/am.1965.102948